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Dipartimento di Fisica Universita la Sapienza, P le A Moro 2, 00185 Roma, Italy and 
GNSN-CNR Unita di Roma, Italy 
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Abstract. We study by numerical means the infinite product of 2 N  X 2 N  conservative 
random matrices which mimics the chaotic behaviour of Hamiltonian systems with N +  1 
degrees of freedom made of weakly nearest-neighbour coupled oscillators. The maximum 
Lyapunov exponent A ,  exhibits a power-law behaviour as a function of the coupling 
constant E :  A ,  - E @  with either p = i  or p =:, depending on the probability distribution of 
the matrix elements. These power laws do not depend on N and moreover increasing N ,  
A ,  rapidly tends to an asymptotic value A T  which only depends on E and on the kind of 
probability distribution chosen for building up the matrices. We also compute the spectrum 
of the Lyapunov exponents and show that it has a thermodynamic limit of large N. 

This suggests the existence of a Kolmogorov entropy per degree of freedom propor- 
tional to A T .  

1. Introduction 

The chaotic behaviour of dynamical systems can be investigated by means of the 
properties of the maximal characteristic Lyapunov exponents A I ,  which are related 
roughly speaking to the divergence of nearby orbits. 

In this paper, we are interested in conservative dynamical systems, which are 
smoothly dependent on a parameter E and integrable for vanishing E, with a large 
number N of degrees of freedom. 

Let us recall that Benettin (1984) has found for some two-dimensional systems (the 
billiards) 

A,-&@ (1) 

with p = 2 .  
Moreover Rechester et a1 (1979) in a simple conservative map on the two- 

dimensional torus obtained the scaling law (1) with p = $. 
These power laws might indicate universal features in conservative systems as were 

also found for 2 x 2 random matrices whose determinants have a value + 1. The powers 
however are either p =; or p =$  depending on the class of probability laws used in 
building up  the matrices (Benettin 1984). 
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In this paper we are interested in the infinite product of 2N x 2N conservative 
random matrices built up in such a way that one has a rough but not trivial approxima- 
tion of a Hamiltonian system made of ( N  + 1 )  weakly nearest-neighbour coupled 
oscillators. 

We look at the E dependence of the maximal Lyapunov exponent (say A,)  for 
systems with an arbitrary N and thus show that power law ( 1 )  with p =; or p = f  
obtained in the case N = 1 (Benettin 1984) still holds for any value of N. 

It is then interesting to discover if a ‘thermodynamic’ limit does exist for large N. 
This might involve a great simplification in investigating properties of large systems. 

We shall see, for example, that the Lyapunov exponents A i ( A i Z A i + ,  with i =  
1, .  . . , 2 N )  only depend on i /  N for N large enough: 

A i = A T f ( i / N )  

A T  = lim A,(N) .  
N-m 

One can thus deduce that there is a Kolmogorov entropy density. 
The Kolmogorov entropy for Hamiltonian systems under the hypothesis that the 

A i  do not depend on initial conditions is (Pesin 1976) 
2N 

IfN= A i B ( A i )  
i = l  

and becomes in the thermodynamical limit by means of ( 2 )  

H N = y  ATf(i/N)B(f(i/N))=hNAT 
i = l  

( 3 )  

(4) 

where h depends on the particular form of the function f (  i / N ) .  
Behaviour (2) was also found in some dissipative (Manneville 1983, Pomeau et al 

1984) and conservative (Livi et a1 1986) systems. 
We shall show that A I  fast approaches its asymptotic value A T ,  and that & / A ,  is 

linear in our case. 
In § 2 we explain the details of the construction of our random matrices; in § 3 we 

discuss the scaling laws of A I  and in § 4 we present the results concerning the existence 
of a thermodynamic limit. 

2. Random matrices products 

The applicability of (1) to dynamical systems with N z 2  is not quite trivial because 
of the dependence on initial conditions. Different behaviours are possible according 
to the starting region in the phase space (Contopoulos et a1 1978, Pettini and Vulpiani 
1984) almost for negligible Arnold diffusion (Arnold and Avez 1968), namely for times 
which may become very large compared to those observed. 

We wish moreover to deal with typical models which may be representative of a 
large class of perturbation forms. 

Let us therefore consider a sequence of 2 N x 2 N random matrices A, ( k ) :  

A , ( k )  = (.+) m ( k )  U+Ea(k) 

Here U is the N x N identity matrix and a is a symmetric N x N random matrix. 
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A, can be regarded as the linearised evolution matrix of the 2N-dimensional map: 

where V = (d/dq, ,  . . . , d/dqN) .  Note that ( 6 )  is volume-preserving and det A, = 1 for 
construction. 

The problem of the product of random matrices 

is indeed related in a natural way to dynamical systems and ( 6 )  can be seen as the 
Poincari map of a Hamiltonian system with ( N +  1) degrees of freedom (Lichtenberg 
and Lieberman 1983). 

Moreover it is easy to see (Chirikov 1982) that the Kolmogorov entropy H of the 
mapping ( 6 )  and the Kolmogorov entropy fi of the original Hamiltonian system are 
related by 

H = T J ~  

where T = (( - t , ) )  if the trajectory crosses, at t = t ,  for the nth time, the surface 
of the section. Thus one sees that the qualitative and quantitative ‘degree of chaoticity’ 
does not change with the reduction of the original Hamiltonian system to the mapping 

Let us also note that ( 6 )  are the equations of N uncoupled oscillators when E 

vanishes. 
The randomness of A , ( k )  mimics the chaoticity of the trajectory generated by ( 6 )  

in the phase space, which is in principle deterministic. Thus we think that (7) is the 
first crude (but not trivial) approximation for describing the dynamics of coupled 
oscillators. 

In order to represent nearest-neighbour couplings, we assume for the symmetric 
matrix a the form 

( 6 ) .  

The non-zero elements of a are random variables distributed according to different 

(9) 

Here a is an odd integer and X the average of all non-zero elements au. 
We shall consider the following cases labelled by m ;  m = 1 :  x1 is uniformly dis- 

tributed in the interval (-1, l ) ,  m = 2: x2 is Gaussian with zero mean value and variance 

probability laws 

ai, = f( x, )~  + X. 

u2= 1. 
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Let us finally remark that it is realistic to assume that the interaction Hamiltonian 
F ( q )  among the oscillators should be of the form 

N 

F ( q )  = c E(e+1- e) 
j = l  

where the sum runs over the N oscillators labelled 
This assumption implies a further constraint 

matrix a 
hi 

by the index j .  
on the elements of the N x N 

which is easy to check by a simple calculation. 

or it is not. 
In the following we shall consider both cases where either constraint (1 1) is imposed 

3. Maximal Lyapunov exponent 

The maximal Lyapunov exponent A ,  is defined for (7) as (Benettin et a1 1980a, b): 
A l  = lim M-' In IJ(M)I 

M+m 

where J ( 0 )  is a generical vector of RZN. 
We have numerically found that the N = 1 results hold without any observable 

dependence on N and on the particular probability distribution chosen as shown in 
figure 1. 

Thus one has 

A l  = C (  N ) e P  (13) 
with /3 = if f # 0, /3 = f if f = 0. 

A l  has been numerically computed, as usual, by following naively the definition 
(12), with a random choice of J(0 ) .  The maximum number of iterations M used is 
5 x lo4 and for small values of E ,  2 x 10'. 

In any case the quantity 

was found to exhibit fluctuations of at most 1-2% in the range M/10< n < M. As a 
random number generator the internal generator of a VAX-11/780 was used. In the 
case with the constraint (1 1) we have generated the off-diagonal matrix element a,j. 
and then the a,, have been determined by the constraint, 

The maximal Lyapunov exponent is known to tend quickly to a constant as N 
increases for chains of oscillators with Lennard-Jones-type interactions at a fixed energy 
constant (Casartelli et a1 1976). 

It is thus not surprising that the prefactor C ( N )  tends to an asymptotic value C(c0) 
which is reached in practice for not too large N (i.e. N a 10). 

Figure 2 shows that the behaviour is quite well fitted by C ( N )  = C(c0) - 6 / N  where 
the constant 6 is very small if f # 0 and constraint (11) is not satisfied. 
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Figure 1. In A ,  plotted against In e.: ( a )  1=0; 0: N=4,  a = 1, m = 1, constraint (11) 
imposed; 0: N = 6 ,  a = 1, m = 2, constraint (11) not imposed; *: N = 4, a = 3, m = 1, 
constraint (11) not imposed; M: N = 4, a = 5 ,  m = 1, constraint (11) not imposed. The line 
indicates the slope f; ( b )  i # 0; 0: N = 5 ,  a = 3, m = 2 , 1 =  0.5, constraint (11) not imposed; 
A: N = 7, a = 3, m = 2, i = 0.5, constraint (1 1) imposed; 0: N = 4, a = 3, m = 1, i = 0.2, 
constraint (11) not imposed; M: N =8, a = 1, m = 1, i =0.1, constraint (11) imposed. The 
line indicates the slope f. 

4. Distribution of Lyapunov exponents in the large N limit 

We have shown in 0 3  that A I  quickly approaches an asymptotic value with 
increasing N. 

This result may indicate the existence of a sort of ‘thermodynamic limit’ when 
N + 00 for many properties of the dynamics generated by (6). 

It is then useful to compute the set of all the Lyapunov exponents { A i }  which give 
a good (even if not complete) description of a dynamical system. 
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Figure 2. A ,  plotted against 1/ N without imposing constraint ( 1 1 ) .  n = 3, 1 = 0, E = 0.1 
and m = 2. 

Let us recall the definition of the { A i }  where A l  3 A z  3 .  . . 3  A z N  for a dynamical 
system x(n+I )=g(x (n) ) ;  g, XEP: 

I 

where 

l(il( M )  = ( 5 A, ( k ) )  {"'(O) 
k = l  

and A, = a g i ( x ( k ) ) / a x j ( k ) ,  l ( " (0 )  are orthonormal vectors with norms lJ(i)(0)l = 1. 
In the framework of the random matrices product the Lyapunov exponents are 

defined by (14) and (15) with A, (k) given by the rules described in 0 2. 
The above definition of {Ai} is however not useful for practical purposes as it is 

necessary to perform a Gram-Schmidt orthonormalisation procedure in order to avoid 
the angle between two vectors 6") and 5") becoming too small for numerical computa- 
tions (see for details Benettin et a1 1980b). 

We have then computed { A i }  imposing the constraint (1 1) on the matrix elements. 
Let us remark that A z N + i - l  = -Ai  as in our case the matrices product is related to 

a symplectic map; one has besides A,., = A N + ,  = 0 because of constraint (1 1) which 
implies the conservation law Zgl Pi = constant in system (3). These equalities have 
been checked in the numerical computation to test the accuracy of the results. 

The convergence of A i  is quite good; the estimated error is 1-3% for i s  N / 2  and 
slightly larger ( 5 % )  for i > N / 2  using M = 3 x lo4. 
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In figures 3 ( a )  and 3 ( b )  we show hi plotted against i / N  for different N values 

Note that a good approximation of the asymptotic distribution is given for ‘large’ 
and different probability laws for constructing the matrix elements aV. 

N by 
hi = AT(1- i /  N )  (16) 

where A T  = limN+, A , (  N ) .  The law (16) seems to hold also without imposing constraint 
(11) if f = 0, while the opposite case (i.e. no constraint ( 1  1) and f # 0) still leads to 
an asymptotic distribution but different from (16). 

0.02 - 

0.2 0.4 0.6 0.8 1.0 
/ I N  

Figure 3. hi plotted against i/  N at different N imposing constraint ( 1  1) .  ( U )  a = 1, f = 0.5, 
~ = l  and m = l ;  0: N = 6 ;  0: N=10; *: N = 2 0 .  ( b )  a = l ,  f = O ,  ~ = l  and m = l ;  0: 
N = 6 ;  *: N = 1 0 ; 0 :  N = 2 0 .  
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We finally wish to stress that the asymptotic distribution (16) is also obtained by 
Livi et al (1986) for a chain of coupled particles interacting through non-linear forces 
(Fermi-Pasta-Ulam model). We believe that it is not a coincidence that the asymptotic 
distribution (16) has been obtained in two quite different Hamiltonian systems. It is 
almost reasonable enough in the case of ‘fully developed chaos’ (e.g. for Hamiltonian 
systems at large energies) to expect a simple asymptotic distribution of Lyapunov 
characteristic exponents equal (or similar) to (16). For example, Ruelle (1982) has 
recently found exact bounds for the case of fully developed turbulence. After comple- 
tion of this work Newman sent us a paper (Newman 1985) where the asymptotic 
distribution (16) for h i  is analytically obtained for the infinite product of some particular 
random matrices. We shall return to this stimulating and intriguing problem with a 
systematic study of symplectic maps, Hamiltonian and conservative systems. 
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